Injection-modulated polarity conversion by charge carrier density control via a self-assembled monolayer for all-solution-processed organic field-effect transistors

نویسندگان

  • Jeongkyun Roh
  • Taesoo Lee
  • Chan-mo Kang
  • Jeonghun Kwak
  • Philippe Lang
  • Gilles Horowitz
  • Hyeok Kim
  • Changhee Lee
چکیده

We demonstrated modulation of charge carrier densities in all-solution-processed organic field-effect transistors (OFETs) by modifying the injection properties with self-assembled monolayers (SAMs). The all-solution-processed OFETs based on an n-type polymer with inkjet-printed Ag electrodes were fabricated as a test platform, and the injection properties were modified by the SAMs. Two types of SAMs with different dipole direction, thiophenol (TP) and pentafluorobenzene thiol (PFBT) were employed, modifying the work function of the inkjet-printed Ag (4.9 eV) to 4.66 eV and 5.24 eV with TP and PFBT treatments, respectively. The charge carrier densities were controlled by the SAM treatment in both dominant and non-dominant carrier-channel regimes. This work demonstrates that control of the charge carrier densities can be efficiently achieved by modifying the injection property with SAM treatment; thus, this approach can achieve polarity conversion of the OFETs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution-processable organic dielectrics for graphene electronics.

We report the fabrication, at low-temperature, of solution processed graphene transistors based on carefully engineered graphene/organic dielectric interfaces. Graphene transistors based on these interfaces show improved performance and reliability when compared with traditional SiO(2) based devices. The dielectric materials investigated include Hyflon AD (Solvay), a low-k fluoropolymer, and va...

متن کامل

Interface Modification for Tuning the Contact Resistance of Metal/ Organic Semiconductor Junctions

As the performance of organic field-effect transistors improves, the limitation due to charge carrier injection at source and drain electrodes becomes crucial. This review describes the various solutions that have been developed to work around this issue. The most widespread method consists of interposing between the electrodes and the organic semiconductor film a self-assembled monolayer made ...

متن کامل

Contact effects in polymer field-effect transistors

Contact resistances often contribute significantly to the overall device resistance in organic field-effect transistors (OFETs). Understanding charge injection at the metal-organic interface is critical to optimizing OFET device performance. We have performed a series of experiments using bottom-contact poly(3-hexylthiophene) (P3HT) OFETs in the shallow channel limit to examine the injection pr...

متن کامل

Monolayer coverage and channel length set the mobility in self-assembled monolayer field-effect transistors.

The mobility of self-assembled monolayer field-effect transistors (SAMFETs) traditionally decreases dramatically with increasing channel length. Recently, however, SAMFETs using liquid-crystalline molecules have been shown to have bulk-like mobilities that are virtually independent of channel length. Here, we reconcile these scaling relations by showing that the mobility in liquid crystalline S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017